History and Future Projections for MPP Computers

Swiss SPEEDUP Society Meeting

Erik P. DeBenedictis

Agenda

• Past
 – Beginnings of Massively Parallel Computers (MPPs) as machines to solve problems

• Present
 – DOE Scaling Rules

• Future
 – Scaling to a Petaflop
 – Extreme Future
 – Exotic methods needed

Past: 1981

• Application: Quantum Chromodynamics Simulation (QCD) Simulation
 – Simulate 3d physical region by assigning a submesh to each MPP processor

Past: 1981

• Design Rules
 – for n points in each dimension
 – n^3 memory
 – n timesteps
 – n^4 computation
 – 3n^2 communication

• Implementation
 – 50 KFLOPS

CPU

Memory
Scaling QCD

- Story 1
 - Finite Difference Scaling Each Generation
 - Each point replaced by eight points
 - Time step halves
 - 8x memory/16x CPU
 - Memory \(\propto \) FLOPS

Present: Other Applications

- Sandia Applications
 - generally related to simulating 3d objects
 - (that is, not commercial databases or code-breaking)
- Examples
 - Finite Elements
 - Dense/Sparse Matrices
 - Particle-in-Cell
 - Bioinformatics

DOE Balance Criteria

<table>
<thead>
<tr>
<th></th>
<th>SNL (Tomkins)</th>
<th>LLNL (Seager)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO Bytes/sec/FLOPS</td>
<td>2</td>
<td>.1/12=.01</td>
</tr>
<tr>
<td>IO Bytes/sec/FLOPS total</td>
<td>2</td>
<td>.1</td>
</tr>
<tr>
<td>Memory Bytes/FLOPS</td>
<td>1.0 (\left(\frac{\text{Perf.}}{\text{TFLOP}} \right)^{25})</td>
<td>1.0 (\left(\frac{\text{Perf.}}{\text{TFLOP}} \right)^{25})</td>
</tr>
<tr>
<td>Memory Bytes/sec/FLOPS</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Other Balance Criteria

<table>
<thead>
<tr>
<th></th>
<th>SNL (Tomkins)</th>
<th>LLNL (Seager)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum (SMP) Processors</td>
<td>20,000</td>
<td>N/A</td>
</tr>
<tr>
<td>Interconnect Topology</td>
<td>3D Mesh</td>
<td>N/A</td>
</tr>
<tr>
<td>Bisection Bandwidth Bytes/FLOPS</td>
<td>.075</td>
<td>.05</td>
</tr>
<tr>
<td>Floorspace, Power, etc.</td>
<td>Etc.</td>
<td>Etc.</td>
</tr>
</tbody>
</table>
Comparison

• Sandia Approach
 – Have problem
 – Buy or build machine to solve problem

• Beowulf and Grid Approach
 – Use existing hardware as machine
 – See what problems can be solved

Future: Technology Scaling

• Moore’s Law
 – Concise

• SIA Semiconductor Roadmap (right)
 – Detailed
 – Applies to industry, not necessarily Universities and DOE

• Industry Data
 – Covered by NDA
 – Business projections (!)

Future: Petaflops Planner

• Observation
 – Scalability rules are sufficiently concrete to permit basic layout of MPPs in future years

• Result
 – Developed program to “floorplan” MPPs of different designs in future
 – Multiple uses of program can show limits of scalability and trends

Example Input

• Factors
 – Performance target
 – Balance factors
 – Time period
Example Output

- Qualitative Features
 - Trends in layout, power, etc.
- Quantitative Features
 - Chip size, # wires, clock rate, etc.
 - Power
 - Cost

Cost & Pin Driver Speed Story

Apparent Problem
- Failure of Moore’s law due to communications and memory bandwidth

Manifestation
- ALL available pins in use
- Still not enough

External Speed

- Problem
 - Moore’s law failed (temporarily) due to non-scalability of bandwidth across pins
 - Pad density fixed
 - Speed to drive a wire across a PC board fixed by power and s/n ratio

- Solution
 - Dual wire differential transmission line
 - Low voltage
 - Meets internal clock rates

Wiring Density

- Wiring a Problem?
 - LLNL balance factors OK
 - Sandia data-intensive balance factors become unwireable with standard packaging

- Maximum Circuit Board Edge Connector Density
 - About 70 Twisted Pairs Per Inch
- Area Volume Rule
 - 3-d mesh has $3n^3$ connections but only $6n^2$ surface
 - Doesn’t solve problem
Shish Kabob Packaging

- Hand crank??
- Water-cooled Base
- X Wiring on Base
- Z Wiring via Flex PC Board
- Y Wiring via Flex PC Board

Power

- Problem: Projections Show Microprocessor Die Dissipation Growing to 1 KW and Beyond
 - Not so for PIMs
- Potential Solutions
 - Power saving circuit design
 - Heat-capable packaging
 - Cut performance estimates
 - Ignore problem

Power Dilemma

- View 1
 - Microprocessors have been increasing in performance by 100%/year recently and the industry will make sure the trend continues
- View 2
 - Microprocessor power consumption has been growing exponentially, and will exceed packaging capability in the next couple generations

Technology Becoming More Exotic

- Dimensionality of Network Ought To Fit Dimensionality of Universe
 - 3d mesh
- Wires Become Transmission Lines
 - Dual conductor
 - 30 GHz
 - Very expensive
- Processor Pipelining Becomes Too Deep
 - hundreds of pipeline stages
 - affects commercial processors as well
- Power Dissipation Will Affect Architecture
 - used to just “calculate heat sink size”
Conclusions & Far Future

• Sandia-Balanced MPPs Will Scale to 1-10 Petaflops
 – Same breadth of applications
 – Same programming methods
 – CMOS technology

• Uncertainty Beyond 10 Petaflops
 – Wiped out by non-scalability of the “speed of light”
 – New technology
 • optical computing
 • quantum
 • biological
 – New prog. methods
 • neural networks